A Universally Composable Cryptographic Library
نویسندگان
چکیده
Bridging the gap between formal methods and cryptography has recently received a lot of interest, i.e., investigating to what extent proofs of cryptographic protocols made with abstracted cryptographic operations are valid for real implementations. However, a major goal has not been achieved yet: a soundness proof for an abstract crypto-library as needed for the cryptographic protocols typically proved with formal methods, e.g., authentication and key exchange protocols. Prior work that directly justifies the typical Dolev-Yao abstraction is restricted to passive adversaries and certain protocol environments. Prior work starting from the cryptographic side entirely hides the cryptographic objects, so that the operations are not composable: While secure channels or signing of application data is modeled, one cannot encrypt a signature or sign a key. We make the major step towards this goal: We specify an abstract cryptolibrary that allows composed operations, define a cryptographic realization, and prove that the abstraction is sound for arbitrary active attacks in arbitrary reactive scenarios. The library currently contains public-key encryption and signatures, nonces, lists, and application data. The proof is a novel combination of a probabilistic, imperfect bisimulation with cryptographic reductions and static information-flow analysis.
منابع مشابه
Extending a universally composable cryptographic library
Protocol verification is essential to guarantee the security of a certain protocol. For a long time there have been two methods for this job: formal and computational. However, for large and complex protocols we need an automated tool to verify them, because of error-prone nature of manual proofs. Such a tool motivates us to reconcile the two verification approaches. In this paper we define an ...
متن کاملAnonymity Analysis of Onion Routing in the Universally Composable Framework
We present the formalization and analysis of a practical paradigm for general anonymous communication using standard cryptographic primitives. Specifically we present a probabilistic analysis of onion routing in a black-box model of anonymous communication in the Universally Composable framework. Full statements of results and proofs can be found in the full paper [7].
متن کاملThreshold Homomorphic Encryption in the Universally Composable Cryptographic Library
Protocol security analysis has become an active research topic in recent years. Researchers have been trying to build sufficient theories for building automated tools, which give security proofs for cryptographic protocols. There are two approaches for analysing protocols: formal and computational. The former, often called Dolev-Yao style, uses abstract terms to model cryptographic messages wit...
متن کاملUniversally Composable Two-Server PAKE
Two-Server Password Authenticated Key Exchange (2PAKE) protocols apply secret sharing techniques to achieve protection against server-compromise attacks. 2PAKE protocols eliminate the need for password hashing and remain secure as long as one of the servers remains honest. This concept has also been explored in connection with two-server password authenticated secret sharing (2PASS) protocols f...
متن کاملUniversally Composable Oblivious Transfer in the Multi-party Setting
We construct efficient universally composable oblivious transfer protocols in the multi-party setting for honest majorities. Unlike previous proposals our protocols are designed in the plain model (i.e., without a common reference string), are secure against malicious adversaries from scratch (i.e., without requiring an expensive compiler), and are based on weaker cryptographic assumptions than...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2003 شماره
صفحات -
تاریخ انتشار 2003